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GEOMETRIC W A V E  THEORY 

The purpose of this note is to present the theory of geometric 
acoustics as it emerges as a special case of the geometric theory of 
general linear wave propagation. The study of geometric theory 
of wave propagation of any type starts with a study of linear solutions 
in a uniform medium which are proportional to functions (generally 
sinusoidal) of a phase variable 4 = ~ - r - - o t ,  with r a distance variable 
in a suitable euclidean space and K a vector wave number. The study 
yields a relation w=Q(K)  term a dispersion relation. If w is real 
when K is real, the waves are termed nondissipative. The solutions 
obtained are termed solutions for plane waves, the waves being planar 
in the r space. A typical example is that of gravity waves in a flat 
ocean of uniform depth, with the r space two-dimensional. 

In  the general geometric theory for nondissipative waves, the 
strict conditions above are relaxed, and an asymptotic theory in a 
slowly varying nonuniform medium is sought for which the local 
solutions are very close to those obtained for plane waves, and w 
and K are considered large in some relative sense. The solutions are 
again proportional to functions (generally sinusoidal) of a phase 
variable t$(r,t), and also to slowly varying amplitude functions. The 
frequency and wave number are defined by 

a4 
at a=-- 

and are themselves functions of r and t, and satisfy 

@ + , W = O  at 

plus the condition that Au is symmetric. 
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The dispersion relation obtained for plane waves depends upon the 
medium, and when applied in the asymptotic theory to the quantities 
defined in equation (1) gives a dispersion relation 

w = Q(%,r, t) (3) 

defined in an augmented space ( q , t ) .  The dispersion relation (3) 
applied to equation (2) gives a firsborder partial differential equation 
for K alone. The method of characteristics gives then, in place of 
equation (2), the ordinary. differential equation 

(4) 
drc -+V,Q=O dt 

holding along characteristics defined by 

dr - = c=V, Q dt 

These characteristics are termed ((rays.” The symmetry of AIL is 
used in deriving equations (4) and (5 ) .  The quantity c is the group 
velocity (ref. l), while the quantity K/W is the inverse phase velocity. 
The frequency w obeys 

so that if the medium is steady, w is constant along rays. 
variable obeys the relation 

The phase 

The rays may be parametrized by coordinates in a parameter space 
a of the same number of dimensions as the space r. In  the obvious 
analog with fluid mechanics in which c becomes the particle velocity 
and the rays become particle paths, the parameter space a becomes 
a Lagrangian variable space. 

The slowly varying amplitude functions required for a quantitative 
solution may be obtained from separate equations. With the waves 
nondissipative this is best done through a conservation law, one in 
which volume integrals of an appropriate energy or wave action 
density are found to be conserved. In  such a law the appropriate 
density times a measure V of an infinitesimal volume element is con- 
stant along rays. A convenient definition of V is as the determinant 
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The quantity V obeys the relation 

dlnV- 
-V.C 

d t  
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(9) 

along rays. 

NONDISPERSIVE WAVES 

A dispersion relation is nondispersive if it is of the form 

where K=Kn and n is a unit vector. The group velocity is then 

with V, a gradient (normal to n) in the unit sphere, while the inverse 
phase velocity is n/c,. Plots of c and n/c, are found to be dual in 
the sense that the procedure used to go from either plot to the other 
is the same. 

The most significant special property of nondispersive waves is that 
the €unctions of phase need not be sinusoidal but may be arbitrary. 
A new phase variable which is a monotonic function of the old may be 
introduced, if desired, and the variables o and K are far less significant 
than they are in the general case. If the medium is steady, it is 
convenient to define the phase so that w=-1;  the phase becomes 
then simply a time variable measured by a fixed observer, with a 
suitably defined zero point. 

Another special property is that the right-hand side of equation 
(7) is zero, so that the phase is constant along rays. This has as 
one consequence the result that the phase tp may be used as one 
component of the parameter space a, and a replaced by (a’,$). 

With a thus replaced, equation (8) may be rewritten 

V= c,A,$w = A,,(. (12) 
where 

A,= 1yl 
is a measure of the area of a ray tube formed by rays for a given 
value of tp as cut by surfaces of constant tp. If the right-hand side 
of equation (9) is divided into normal and tangential parts, we can 
identify 
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n . vc - n, -- -- d In K 

dt 

Here V, is the tangential gradient, normal to n. 
GEOMETRIC ACOUSTICS 

A study of linear inviscid acoustic theory following the approach 
outlined above leads to the conclusion that its geometric theory is 
of the nondissipative, nondispersive type. The perturbation velocity 
q and the perturbation pressure p' are related by 

nP1=P"l (15) 

while the dispersion relation (10) is 

c,(n,r,t) =a(r,t) +n-u(r,t) (16) 

where a is the speed of sound and u is the undisturbed fluid velocity 
(wind). Equations (4) and (6) are replaced by equation (13) and 

@=-vp-(vlu) dt - n 

-=-(-+-. d lnw 1 aa au n) 
dt c, a t  a t  

From equation (1 1) the group velocity is given by 

c=an+u (19) 

The ray-tube 
area A, may be obtained by a quadrature, essentially that of equation 
(14b), after a differential equation for the wave-front curvature 
V,n has been solved.' If the medium is steady, so that w is constant 
along rays, the result reduces to the classical result of Blokhintsev 
that pq2cn2An/a is constant along rays. 

The quantity constant along rays is pq2~n2An/~2a. 

PROPAGATION IN A STRATIFIED MEDIUM 

A stratified medium is one in which the dependence of 0 on r and 
We t reduces to that in one Cartesian variable, here chosen to be z. 

W. D. Hayes: The Energy Invariant for Geometric Acoustics in il Moving 
Medium. Phys. Fluids, vol. 11, 1968, to be published. 
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replace r by r’+zk and K by K’ +xZk. The general dispersion relation 
(3) takes the form 

W=Q(K’,Kz,Z) (20) *‘, 

Equations (4) and (6) give 

A separate equation for x Z  may be given, but we may consider it 
given by. equation (20) in terms of IC’ and w. 

We use the term Snell’s law for a refraction law, once integrated, 
for wave propagation in a stratified medium. The result, equation 
(21) gives directly the general Snell’s law that IC’ and w are constant 
along rays. In particular, also, the horizontal component d / w  of the 
inverse phase velocity is constant along rays. 

It is convenient to replace t by z as a basic independent variable. 
The ray equations (5 )  then take the form 

_-__ -K(K’, w, Z )  
dr’ c’ 
dz -cz 

dt 1 z=e, 
and can be integrated by quadratures to give the rays r‘(z), t (z) .  

When the wave propagation is nondispersive the dependence of 
K in equation (22) upon K’ and w reduces to dependence upon the 
horizontal component 

K’ n’ -- --=N(a’,cp) 
w Gn 

of the inverse phase velocity. 
to  be given by 

The volume element V may be shown 

V=C,A/w (25) 

where A is a measure of the area of a ray tube formed by rays for a 
given value of cp as cut by planes of constant z. The area A may 
conveniently be defined 

A= / V a d  I (26) 

To evaluate A we apply the operator Aa’ to equation (22). The 
total derivative d/dz in equation (22) is a partial derivative in a 
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(a'+) space, and commutes with the operator Val. Thus we obtain 

-- -Va*K = Vat Ne VNK dVax ' 
dz 

In  this equation Va'N is constant, while with N given VNK is a func- 
tion of z alone. The solution of (27) is then 

Vad=(Vad) ZO+VarN*J:K dz (28) 

The determinant then gives A according to equation (26). 

only upon z. 
(221, 

In  the acoustic case we take u to be horizontal and dependent 
The horizontal vector K may be evaluated from equation 

(29) 

We define the horizontal unit vector i and j so that N=Ni and 
uj=u-ii.u. We introduce the angle 8 such that %,=sin 8, n'= 
i cos e, and note that c,=a sin 8. 

a2N+ (1 -u-N)u 
aJ( 1 -u - N)2-a2N2 

K= 

The derivative 

(30) 

is obtainable from equation (29), and permits A to be calculated 
through equation (28). The conserved Blokhintsev quantity is 
pq2c,eZA/a=N-'pq2A sin e COS e. 

The theory given here is equivalent to that used2 in a recently 
developed computer program for calculating sonic boom pressure 
signatures. In  such a calculation, results are fist obtained using 
geometric acoustics and then modified for nonlinear effects. 
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